Se vedessimo un cubetto di ghiaccio sciogliersi in acqua, riaddensarsi di nuovo in ghiaccio, e poi continuare a liquefarsi e cristallizzarsi all'infinito, certamente rimarremmo di stucco. Qualcosa del genere è stato ottenuto da fisici dell’università statunitense Emory, che descrivono in un articolo recentemente pubblicato su Physical Review Letters come un insieme di microscopiche particelle di plastica possa collettivamente continuare a passare dallo stato cristallino allo stato fluido anche se le condizioni ambientali rimangono le stesse.
Semplice, ma efficace. «Abbiamo probabilmente scoperto il più semplice sistema fisico che può costantemente continuare a cambiare comportamento nel tempo in un ambiente stabile», dice Justin Burton della Emory, coautore del nuovo studio. «In effetti, il sistema è così semplice che non ci saremmo mai aspettati di vedere tali proprietà complesse emergere da esso».
L'unione fa... l'emergenza. Ecco che proprietà emergenti risulta l'espressione chiave per descrivere questi sistemi che, collettivamente, mostrano comportamenti simili a quelli considerati tipici delle forme di vita. «Le singole particelle non possono cambiare tra stato cristallino e fluido», spiega Burton. «La commutazione emerge quando ci sono gruppi di queste particelle, a partire da un minimo di 40. I nostri risultati suggeriscono che la capacità di un sistema di cambiare comportamento in una qualsivoglia scala temporale è più universale di quanto precedentemente ritenuto».
Il laboratorio di Burton alla Emory studia il comportamento di minuscole particelle di plastica come modello per sistemi più complessi, mimando proprietà di fenomeni reali e studiando come un sistema cambia sotto l’azione di forze esterne. Le particelle sono sospese in una camera a vuoto riempita con un plasma di gas argon ionizzato, dove elettroni e ioni liberi si scontrano continuamente tra loro. Se vengono introdotti dei grani di plastica, gli elettroni si attaccano frequentemente alle particelle, alterando drasticamente la dinamica del sistema. I ricercatori possono quindi studiare il comportamento delle particelle semplicemente modificando la pressione del gas all'interno della camera.
Cosa succede se...? Quest'ultima scoperta si deve principalmente all'entusiasmo giovanile dello studente Guram Gogia, che ha ben pensato di “cucinare a fuoco lento” nella camera a vuoto un singolo strato di particelle, levitanti sopra un elettrodo carico. «Ero solo curioso di sapere come le particelle si sarebbero comportate nel tempo impostando i parametri della camera a una bassa pressione di gas, permettendo loro di muoversi liberamente», racconta Gogia. «Dopo pochi minuti ho potuto vedere con i miei occhi che succedeva qualcosa di strano».
Nell’esperimento impostato da Gogia, in un lasso di tempo compreso tra poche decine di secondi fino ad alcuni minuti, le particelle passavano da una struttura rigida, ovvero un movimento sincrono, a uno stato fluido simil-gassoso, continuando poi sorprendentemente ad alternarsi fra i due stati.
Tutto muta. «Il cambiamento di stato è una parte onnipresente del nostro mondo fisico», conclude Burton. «Niente rimane in uno stato stabile per lungo tempo, dal clima della Terra ai neuroni in un cervello umano. Capire come i sistemi attuino questi passaggi è una questione fondamentale in fisica. Il nostro modello semplifica la complessità di questo comportamento, fornendo gli ingredienti minimi necessari per aiutare a studiare sistemi ben più complessi».
Il video della Emory University (in inglese)
A cura di Media Inaf