Un team di ricercatori dell'Università di Kyoto (Giappone) ha raffreddato degli atomi di itterbio fino a una temperatura quasi pari allo zero assoluto (ovvero -273,15 °C) per capire in che modo si comporta la materia a temperature così basse e studiare le proprietà del magnetismo quantistico. «A meno che qualche civiltà extraterrestre stia eseguendo lo stesso esperimento in questo istante, direi che all'Università di Kyoto stanno fabbricando i fermioni più freddi dell'Universo», commenta Kaden Hazzard, uno degli autori dello studio pubblicato su Nature Physics, riferendosi agli atomi che compongono l'itterbio, un metallo che fa parte delle terre rare.
«A temperature così basse la fisica della materia cambia, e possiamo osservare nuovi fenomeni», spiega Hazzard. Il comportamento quantistico degli atomi si mostra infatti solo a una temperatura molto vicina allo zero assoluto: gli studiosi di Kyoto l'hanno quasi raggiunta, raffreddando gli atomi con dei fasci laser fino a un miliardesimo di grado sopra lo zero assoluto.
Supersimmetria. Per studiare gli atomi a bassissima temperatura, i ricercatori hanno utilizzato il cosiddetto modello di Hubbard, un modello quantistico creato nel 1963 e spesso utilizzato per capire il comportamento magnetico e superconduttore dei materiali. Il modello simulato in laboratorio presenta una simmetria speciale chiamata SU(N), dove SU sta per gruppo unitario speciale (special unitary group) e N indica lo stato di spin (ovvero la rotazione) delle particelle. Nel caso dell'itterbio, N corrisponde a 6: maggiore il valore di N, maggiore la simmetria del modello e la complessità del comportamento magnetico che descrive.
Proprietà sconosciute. In questo caso ci troviamo di fronte a un sistema altamente simmetrico, caratteristica che permette ai fermioni di raggiungere temperature così basse. L'aspetto più interessante della scoperta è che nessun supercomputer è attualmente in grado di simulare precisamente il comportamento delle particelle a queste bassissime temperature: a Kyoto sono riusciti a "catturarne" 300.000 nel reticolato 3D di Hubbard, e ora è possibile osservarle e capire il funzionamento di questi complessi sistemi quantistici per la prima volta. «Riuscire a studiare il ruolo della simmetria in laboratorio è straordinario», sottolinea Eduardo Ibarra-García-Padilla, uno degli autori. «Comprenderne a fondo il meccanismo potrebbe aiutarci a progettare materiali con nuove proprietà».