Scienze

Che cos'è la meccanica quantistica

La meccanica quantistica, o teoria dei quanti,  è una teoria che i suoi stessi creatori non capivano pienamente, ma che si è rivelata l’unica capace di spiegare il comportamento della materia nel mondo microscopico.

Nel cuore della materia c’è un mondo immenso, composto da miliardi e miliardi di particelle, che sfugge ai nostri sensi e alla nostra intuizione. Un mondo in cui non valgono le leggi fisiche usuali, ma quelle più complicate e “misteriose” della meccanica quantistica, una teoria così paradossale da stupire gli stessi scienziati che l’hanno inventata. «Nessuno la comprende davvero» ha detto nel 1965 Richard Feynman, uno dei fisici più brillanti della sua generazione.

Affascinante. Eppure questa teoria funziona, perché descrive il mondo degli atomi e delle molecole con precisione impeccabile. E ha moltissime applicazioni, dai laser alla risonanza magnetica. Anzi, si sospetta che siano alcuni fenomeni ad essa collegati, come l’effetto tunnel, a rendere possibile la fotosintesi e quindi la vita.

Non solo, la meccanica quantistica, per le sue caratteristiche quasi “magiche”, da sempre affascina filosofi e scienziati. E oggi sta entrando nella nostra cultura “quotidiana”, ispirando anche libri, film e opere d’arte. Ma che cos’è davvero questa teoria? E perché è così importante? Andiamo con ordine.

Particelle miracolo. Onde che si comportano come particelle, particelle che oltrepassano le barriere come fantasmi o che comunicano tra loro in modo “telepatico”... È questo lo strano mondo che gli scienziati si sono trovati di fronte quando hanno scoperto la meccanica quantistica.

Una delle caratteristiche principali di questa teoria è la quantizzazione. Cioè il fatto che, nel mondo microscopico, le quantità fisiche come l’energia non possono essere scambiate in modo “continuo”, come un flusso d’acqua del rubinetto che si può dosare a piacere, ma attraverso “pacchetti” detti “quanti”... come acqua contenuta in bicchieri o bottiglie dal volume prefissato. In virtù di questa proprietà, la luce è composta da corpuscoli di energia detti “fotoni”; e anche gli atomi possono assorbire questa energia soltanto a pacchetti: un atomo, per esempio, può assorbire o emettere 1 o 2 o 3 o più fotoni, ma non 2,7 fotoni o mezzo fotone.

È quello che avviene nell’effetto fotoelettrico, in base al quale un metallo colpito dal giusto tipo di luce produce elettricità: questo fenomeno, scoperto alla fine dell’800 e spiegato nel 1905 da Einstein, è alla base del funzionamento dei moderni pannelli fotovoltaici.

Onda o particella? La seconda “stranezza” della meccanica quantistica è il fatto che – come Giano Bifronte – tutte le particelle hanno una doppia natura: «In alcuni esperimenti si comportano come corpuscoli, in altri come onde» spiega Giancarlo Ghirardi, professore emerito di fisica all’Università di Trieste. «Un esperimento che mostra la natura ondulatoria degli elettroni è quello della doppia fenditura: si pone uno schermo sensibile di fronte a una doppia fenditura e si osserva che gli elettroni impressionano la lastra formando frange di interferenza, proprio come fa la luce (vedi disegno qui sotto).

Altri esperimenti dimostrano invece che gli elettroni sono particelle».

c Onda o particella? La luce passa da una fenditura, poi ne incontra altre due. Le onde interferiscono tra loro, creando chiazze alternate di luce e buio; se fossero particelle, ci sarebbe luce solo in A e in B. Con un fascio di elettroni accade la stessa identica cosa. Eppure, con altri esperimenti, si dimostra che gli elettroni sono particelle. Ecco perché si parla di “dualismo onda-particella”.

Imprevedibile. La fisica classica è “prevedibile”: permette di calcolare con precisione la traiettoria di un proiettile o di un pianeta. Nella meccanica quantistica, invece, quanto più precisamente si conosce la posizione di una particella, tanto più incerta diventa la sua velocità (e viceversa).

Lo dice il principio di indeterminazione, formulato nel 1927 dal fisico tedesco Werner Heisenberg. Quindi, se vogliamo descrivere il comportamento di un elettrone in un atomo, possiamo solo affermare che è localizzato in una nube intorno al nucleo, e la meccanica quantistica ci indica la probabilità che, effettuando una misura, l’elettrone si trovi in un certo punto. Prima della misura, lo stato dell’elettrone è descritto dall’insieme di tutti i possibili risultati: si parla quindi di sovrapposizione degli stati quantistici. Nel momento della misura, l’elettrone “collassa” in un singolo stato. Questo principio ha un risvolto concettuale importante: in un certo senso, con i loro strumenti di misura, gli scienziati intervengono nella creazione della realtà che stanno studiando.

Come fantasmi. Un altro fenomeno quantistico bizzarro è l’effetto tunnel, cioè il fatto che le particelle possano superare una barriera come un fantasma passa attraverso un muro. «È così che si spiega il decadimento delle sostanze radioattive» dice Ghirardi. «La radiazione emessa da questi materiali, infatti, è costituita da particelle che superano una barriera energetica all’interno dei nuclei».

Un esperimento di propagazione della luce a velocità 4,7 volte superiore rispetto a quella nel vuoto (ma senza violare la relatività di Einsein), un fenomeno reso possibile dalla propagazione attraverso una barriera energetica (effetto tunnel).

Intrecci luminosi. Tutto ciò è già abbastanza strano. Ma il fenomeno più curioso è l’entanglement (“intreccio”). Immaginiamo di prendere due fotoni in una “sovrapposizione di stati” - possiamo pensarli come monete che girano all’infinito, mostrando entrambe le facce (testa o croce) - e di sottoporli all’entanglement, per poi portarli ai lati opposti dell’universo.

Secondo la meccanica quantistica, se effettuiamo una misura su uno dei due, e otteniamo per esempio testa, anche l’altra moneta, istantaneamente, cessa di trovarsi in uno stato indeterminato: se la misuriamo (dopo un secondo o dopo un secolo) siamo sicuri che il risultato sarà testa. Le due particelle sono come in... contatto telepatico. Assurdo? No, entanglement!

Come Star Trek. Questa caratteristica sorprendente si può usare per realizzare il teletrasporto quantistico (vedi gallery qui sotto). «Supponiamo di voler trasferire da un punto A a un punto B un fotone identificato dal suo stato di polarizzazione» dice Ghirardi. «Per farlo bisogna disporre, oltre al fotone da teletrasportare, di due fotoni entangled, uno in A e l’altro in B. Poi si fa interagire il fotone da teletrasportare con il primo fotone entangled (quello in A) e si comunica all’osservatore in B l’esito dell’operazione, e così facendo gli si indica come deve manipolare il secondo fotone entangled per ottenere una copia identica del fotone di partenza».

In pratica, le informazioni del fotone di partenza sono trasferite in B grazie all’intermediazione dei fotoni intrecciati: in realtà si tratta di un trasferimento di informazioni, più che di un trasferimento di materia come quello di Star Trek.

È per questo che il teletrasporto interessa soprattutto agli scienziati che studiano i computer quantistici del futuro. Computer, cioè, in cui sono elaborati qubit invece dei “bit” (sequenze di “0” e “1”) dell’informatica tradizionale: il vantaggio è che i qubit consentono di svolgere in breve tempo, “in parallelo”, operazioni che ai computer tradizionali richiederebbero anni. Così, con un numero “n” di qubit, la quantità di strade di calcolo che possono essere intraprese contemporaneamente è pari a 2N, cioè 2x2x2... x2, n volte: con meno di 300 qubit si supererebbe il numero di particelle dell’intero universo. Finora, però, si riescono a manipolare solo pochi qubit, e con grande difficoltà: il “magico” mondo dei computer quantistici è tutto da esplorare.

Più di recente, 2 fisici dell’Università del Queensland (Australia) hanno ideato perfino il teletrasporto “temporale”, applicando l’entanglement al tempo anziché allo spazio, sempre con l’obiettivo di rendere possibili calcoli complessi. Ma, se funzionasse, sarebbe il primo vero esempio di macchina del tempo, sebbene un po’ diversa da come la fantascienza l’ha sempre immaginata.

29 persone (una sola donna, Marie Curie), 17 erano o sarebbero diventati premi Nobel, per la fisica o la chimica. Sono i partecipanti alla V Conferenza Solvay, dedicata ufficialmente a elettroni e protoni, ma che in realtà ospitò il primo grande dibattito sulla fisica quantistica, mettendo a confronto i sostenitori dell’interpretazione della meccanica quantistica secondo la scuola di Copenhagen e un nutrito gruppo di scettici che non credeva nella sua natura intrinsecamente probabilistica. I primi avevano come leader indiscusso Bohr e i secondi erano rappresentati da Einstein. I due scienziati si contrapposero a colpi di esperimenti mentali (Gedankenexperimente). Sono entrate nella leggenda le animate discussioni che iniziavano già durante la colazione del mattino, quando Einstein proponeva un esperimento mentale all’attenzione di Bohr, il quale poi passava la giornata a trovare una spiegazione che rientrasse nei canoni della meccanica quantistica.

I Quanti nella filosofia e nella cultura. La meccanica quantistica però non è soltanto strana e complicata. Ci costringe anche a rivedere gli schemi mentali ai quali siamo abituati, mettendo alla prova le nostre convinzioni e offrendo nuove risposte alle domande che i filosofi si pongono da millenni. Ecco alcuni esempi.

IL DESTINO È PREVEDIBILE?

Come dimenticare, per esempio, le punizioni di Maradona? Le traiettorie impresse al pallone erano un mirabile incontro di sport e fisica. Tuttavia, se un ipotetico “Pibe de oro” quantistico si trovasse tra i piedi un elettrone, non riuscirebbe a calciarlo con la stessa precisione. Quel “pallone”, infatti, non seguirebbe la logica deterministica di tiro-gol.

Grazie al principio della sovrapposizione di stati, infatti, potrebbe essere in qualunque punto del campo, diffondendosi come una nebbia in più luoghi contemporaneamente. E soltanto dopo essere stato osservato “collasserebbe” finalmente in un punto preciso, magari proprio in rete… il destino, insomma, non è prevedibile.

Tutto il contrario di quello che sostenevano nel V sec. a. C. i greci Leucippo e Democrito, secondo i quali il mondo era composto da atomi che si muovono nel vuoto in modo prevedibile. Anche se poi, un secolo dopo, un altro greco, Epicuro, ipotizzò che tra gli atomi ci fossero urti casuali con conseguenze imprevedibili.

La fisica classica, nell’800, sembrava dar ragione ai primi due. La meccanica quantistica, invece, seppure su basi completamente diverse, è più vicina al pensiero di Epicuro.

L’UNIVERSO ESISTE INDIPENDENTEMENTE DA NOI?

Esse est percipi: le cose, per esistere, hanno bisogno di essere percepite. Lo sosteneva nel ’700 il filosofo britannico George Berkeley, secondo cui una palla o un albero non esistono in sé, indipendentemente da noi: quelli che percepiamo sono gli stimoli sensoriali che ci arrivano direttamente da Dio. E il filosofo tedesco Immanuel Kant, sempre nel ’700, aveva ribadito che non si può conoscere il mondo “così come è in sé” (da lui definito noumeno), ma solo “ciò che appare”. Qualcosa di simile, due secoli dopo, dice la meccanica quantistica: per determinare la posizione di una particella, per esempio bisogna illuminarla… e allora la particella, colpita dalla luce, schizza via. Sappiamo dov’è, ma non dove sarà dopo un istante.

Per osservare la realtà, insomma, bisogna “disturbarla”: «Secondo l’interpretazione di Copenhagen » spiega Giulio Giorello, docente di filosofia della scienza all’Università Statale di Milano «gli eventi quantistici dipendono dalla presenza dell’apparato di osservazione che li deve misurare».

Einstein non riusciva a digerire questo aspetto della teo­ria: era infatti convinto che la real­tà fosse ben determinata e indipendente da chi l’osserva. Ma oggi gli esperti sono a favore dell’interpretazione di Copenhagen.

Niels Bohr e Albert Einstein, due padri della teoria. Fu in una delle loro discussioni sul significato fisico della meccanica quantistica che Einstein pronunciò la nota frase: “Dio non gioca a dadi”. Bohr confutò brillantemente tutte le critiche di Einstein, che però non si convinse mai fino in fondo della natura probabilistica del mondo quantistico. © Wikimedia Commons

E SE L’EFFETTO PRECEDESSE LA CAUSA?

Uno dei pilastri della scienza classica è la regola secondo cui, nel mondo in cui viviamo, a ogni causa segue necessariamente un effetto: se tiro un sasso verso una finestra la rompo, se tocco il fuoco mi brucio. Nel ’700, il filosofo scozzese David Hume mise in discussione questo principio: anche se tutti i giorni due avvenimenti si susseguono, non dobbiamo considerare questo legame una conseguenza logica, perché potrebbe trattarsi di una nostra associazione di idee determinata dall’abitudine.

La scienza tradizionale non ha mai messo in dubbio il principio di causa ed effetto. La meccanica quantistica sembrerebbe violarlo, ma non è così: la teoria permette di calcolare con certezza alcuni aspetti dell’evoluzione delle particelle, ma non tutto (per il resto bisogna accontentarsi di calcolare la probabilità che un certo fenomeno accada). Ma in nessun caso la teoria ammette situazioni in cui, per esempio, l’effetto preceda la causa o ne sia scollegato.

LA NOSTRA ESSENZA SI ESTENDE A TUTTO L’UNIVERSO?

Quando navighiamo in Internet, lo spazio sembra essere risucchiato da un click del mouse, all’interno di collegamenti ipertestuali fra sistemi che distano migliaia di km l’uno dall’altro.

Nel mondo subatomico, in certe condizioni, può succedere la stessa cosa: ci sono particelle “gemelle”, legate tra loro dalla proprietà dell’entanglement, che pur trovandosi in punti opposti dell’universo riuscirebbero a comunicare istantaneamente fra loro, agendo come un tutt’uno.

Questo fenomeno, ormai dimostrato, demolisce uno dei pilastri della fisica tradizionale: il principio di località . Tanto da far sorgere un dubbio: viviamo forse in un tutto indivisibile, dinamico, le cui parti sono interconnesse come sosteneva nel ’600 il filosofo olandese Baruch Spinoza?

Secondo la sua visione “panteistica”, esiste una sostanza unica e infinita, un ordine geometrico in cui Dio e natura coincidono (Deus sive natura, “Dio, ovvero la natura”) come causa interna al tutto.

LA NATURA RIFIUTA IL VUOTO?

Natura abhorret a vacuo (“la natura rifiuta il vuoto”): la frase risale al Medioevo, ma il concetto è antico: già nel IV sec. a. C. Il greco Aristotele e i suoi discepoli negavano l’esistenza di “un luogo in cui non c’è nulla”, dove “non è possibile che neppure un solo oggetto si muova”.

Il tabù, in Occidente, è rimasto per millenni, assimilato persino dalla Chiesa, che non tollerava l’esistenza di un luogo senza Dio. Poi la fisica classica aveva dimostrato che il vuoto si poteva creare, per esempio eliminando l’aria da un contenitore. Sembrava possibile anche creare il “vuoto perfetto”, cioè una regione di spazio del tutto priva di atomi e di luce.

Ma la meccanica quantistica ha stabilito che questo non è possibile: anche il “vuoto perfetto” conterrebbe infinite fluttuazioni energetiche in grado di generare particelle virtuali che nascono dal nulla e spariscono continuamente in tempi brevissimi. Aristotele, insomma, in un certo senso aveva ragione.

LA REALTÀ È MATERIA O INFORMAZIONE?

Oggi assistiamo al trionfo dell’informatica: testi, immagini, suoni e filmati viaggiano in Internet da una parte del mondo all’altra sotto forma di sequenze di 0 e 1: i bit. Questi mattoncini digitali, parte essenziale della nostra vita, ci portano a una riflessione: la realtà è formata da materia o da bit? Forse, come racconta il film di fantascienza Matrix, viviamo in un grande cervello elettronico che simula il mondo. Con la differenza che i bit della meccanica quantistica sono diversi da quelli “classici”: si chiamano qubit e consentono combinazioni (e operazioni logiche) di una complessità senza paragoni nel mondo dell’informatica tradizionale

ESISTE UNA TEORIA CAPACE DI SPIEGARE OGNI COSA?

I fisici cercano una Teoria del tutto, in grado di unificare ogni cosa: uomo e stelle, piccolo e grande… ce la faranno? Non è detto, ma l’ambizione è antica.

A suo modo, ci aveva già provato nel VI sec. a. C. il filosofo greco Pitagora, affidando ai numeri, costituenti ultimi della natura, il compito di tenere unito l’universo.

Oggi, invece, si punta soprattutto a un’evoluzione della Teoria delle stringhe detta “Teoria M”. Più che un’unica teoria, al momento è un sistema di 5 teorie distinte che si applicano in contesti diversi.

Potremmo paragonarla a una grande mappa del mondo: per rappresentare fedelmente l’intera superficie terrestre occorrono tante piccole carte geografiche che, sovrapponendosi parzialmente tra loro, mostrano aspetti diversi dello stesso paesaggio.

Riadattato da un articolo di Roberto Rizzo e Carolina Borella

1 novembre 2017
Ora in Edicola
Scopri il mondo Focus. Ogni mese in edicola potrai scegliere la rivista che più di appassiona. Focus il magazine di divulgazione scientifica più letto in Italia, Focus Storia per conoscere la storia in modo nuovo ed avvincente e Focus Domande & Risposte per chi ama l'intrattenimento curioso e intelligente.

Immergiti nella storia affascinante della Grande Mela! In questo numero di Focus Storia facciamo un viaggio nel tempo alla scoperta di New York, dalla sua fondazione ai ruggenti anni Venti.

Scopri come un toscano scoprì Manhattan, come i tycoon costruirono imperi economici e come la città si trasformò in una megalopoli verticale. Segui le orme delle potenti first lady, esplora i quartieri malfamati e i teatri di Broadway, e rivivi le emozioni degli stadi e dei palazzetti che hanno fatto la storia dello sport.

ABBONATI A 29,90€

In questo numero di Focus, esploriamo un affascinante mix di scienza, natura e vita quotidiana.

Dedichiamo un ampio speciale al mondo degli animali domestici. Scopriremo come costruire un rapporto solido con i nostri amici a quattro zampe, come prendersene cura al meglio e come interpretare i loro comportamenti. Un dossier ricco di consigli pratici e curiosità per tutti i proprietari di cani e gatti.

Con l'articolo "Così vivremo sotto il mare" ci immergiamo nelle profondità marine per studiare gli habitat degli abissi, mentre l'articolo "La scuola degli astronauti" ci racconta come ci si prepara per esplorare le profondità del cosmo, per svelare i misteri dell'universo.

ABBONATI A 31,90€
Follow us