Il triangolo di Tartaglia (o di Pascal), viene chiamato così dal nome dei due studiosi che lo utilizzarono per risolvere problemi matematici. Si costruisce mettendo alla sommità il numero 1, nella riga successiva una coppia di 1 e per le righe successive si procede ponendo all’inizio sempre 1, mentre gli altri numeri si ottengono sommando via via le coppie di numeri che li precedono e li seguono nella riga superiore. Si può così continuare all’infinito.
Binomi e strette di mano. Il matematico italiano Niccolò Tartaglia (1499-1557) lo utilizzò per trovare i coefficienti dell’elevamento a potenza di un binomio. Per ottenerne il quadrato, per esempio, bisogna moltiplicare il binomio (a+b) per se stesso: il risultato è a2+ 2ab+b2. I numeri che precedono le lettere corrispondono proprio a quelli della seconda riga del triangolo di Tartaglia. Il filosofo e matematico francese Blaise Pascal (1623-1662) utilizzò invece il triangolo per ricavare tutti gli abbinamenti possibili tra alcuni gruppi di numeri predefiniti. Se, per esempio, si vuole scoprire quante sono le strette di mano che si possono scambiare 2, 4 o 10 persone diverse, bisogna andare nella riga del 2 del triangolo e scorrere una delle due diagonali corrispondenti (sono uguali): accanto ai numeri ipotizzati, si trova il risultato: tra 2 persone è possibile una sola stretta di mano, tra 4 sono possibili 6 strette, tra 10 sono possibili 45 strette di mano.